
www.manaraa.com

Softw Syst Model (2008) 7:67–83
DOI 10.1007/s10270-006-0039-3

REGULAR PAPER

Producing robust use case diagrams via reverse engineering
of use case descriptions

Mohamed El-Attar · James Miller

Received: 2 March 2006 / Revised: 6 October 2006 / Accepted: 22 November 2006 / Published online: 23 January 2007
© Springer-Verlag 2007

Abstract In a use case driven development process,
a use case model is utilized by a development team to
construct an object-oriented software system. The large
degree of informality in use case models, coupled with
the fact that use case models directly affect the quality of
all aspects of the development process, is a very danger-
ous combination. Naturally, informal use case models
are prone to contain problems, which lead to the injec-
tion of defects at a very early stage in the development
cycle. In this paper, we propose a structure that will aid
the detection and elimination of potential defects caused
by inconsistencies present in use case models. The struc-
ture contains a small set of formal constructs that will
allow use case models to be machine readable while
retaining their readability by retaining a large degree
of unstructured natural language. In this paper we also
propose a process which utilizes the structured use cases
to systematically generate their corresponding use case
diagrams and vice versa. Finally a tool provides support
for the new structure and the new process. To demon-
strate the feasibility of this approach, a simple study is
conducted using a mock online hockey store system.

1 Introduction

Use case modeling [37], since it was introduced in the
early 1990s by Ivar Jacobson has been constantly gaining

Communicated by Prof. August-Wilhelm Scheer.

M. El-Attar (B) · J. Miller
STEAM Laboratory, Department of Electrical and Computer
Engineering, University of Alberta, Edmonton, AB, Canada
e-mail: melattar@ece.ualberta.ca

J. Miller
e-mail: jm@ece.ualberta.ca

wide acceptance by analysts, designers, testers and other
stakeholders of a project. Use case modeling can be used
to drive the design phase, the testing phase [28] and
can be utilized for managerial purposes such as effort
estimation [3] and business modeling [26]. The success
experienced by use case modeling is chiefly because it is
very simple to use to effectively describe the functional
requirements of a system. Another attractive aspect of
use case modeling is that it contains a small diagram-
matic notational subset and a large degree of natural
language. This allows all stakeholders of a project to
understand the use case model, even those who are not
technically equipped, which in turn will ensure that all
stakeholders have a common understanding and agree-
ment upon the capabilities and features of the system.

The large degree of informality contained in the use
case descriptions often causes use case descriptions to
be inconsistent with their corresponding use case dia-
grams. Moreover, inconsistencies may reside within the
use case descriptions themselves. In a use case driven ap-
proach [25] such as the Rational Unified Process (RUP)
[29,30,39], use case models are used to produce other
UML artifacts such as activity and sequence diagrams
[21,22,25,32,38,41,50]. Hence, it is important to invest
in producing high quality use case models that will yield
the production of other high quality UML artifacts. Con-
sistency is a key quality attribute of use case models.
Ensuring the consistency between use case descriptions
and their corresponding diagrams requires a great deal
of discipline from analysts, which seldom exists. More-
over, producing consistent use case models has been
chiefly dependant on the experience of analysts. It is
common knowledge that the expertise of analysts in
industry varies significantly. Often, junior analysts are
required to develop use case models, which will be highly

www.manaraa.com

68 M. El-Attar, J. Miller

vulnerable to inconsistencies. The produced inconsis-
tent use case models may potentially lead to the pro-
duction of low quality software systems. Therefore, it
is essential to devise a structure that will aid the pro-
duction of consistent use case descriptions. It is also
important that this structure can be used to ensure the
consistency between the use case descriptions and their
corresponding diagrams; while maintaining the ability of
these diagrams to be understandable to all stakeholders,
including “non-technical” stakeholders.

In this paper we propose a structure to assist with
the description of use cases. The proposed use case
description structure is called Simple Structured Use
Case Descriptions (SSUCD). SSUCD serves as a guide-
line for authors in producing their use cases. Moreover,
the SSUCD form will allow the use case descriptions to
be machine readable. In this paper we devised a tech-
nique named Reverse Engineering of Use Case Dia-
grams (REUCD), which will systematically generate
use case diagrams from use cases that are described
in the SSUCD form. Use case diagrams are developed
at a much higher level of abstraction than use case
descriptions. Hence, use case diagrams can be accu-
rately reverse engineered from use case descriptions
using REUCD. REUCD extracts limited information
from use case descriptions to generate use case diagrams.
Figure 1 shows an overview of SSUCD and REUCD.
The REUCD process may also be reversed, whereby the
use case diagram is initially developed and used to sys-
tematically generate ‘skeletons’ for the use case descrip-
tions. Details about the events occurring in the use cases
can then be manually completed. This concept is dis-
cussed in further detail in Sect. 4. However, the theme
throughout this paper will be aimed at initially compos-
ing use case descriptions then systematically generating
the diagrams from them, since use case descriptions con-
tain all the information required to produce a complete
use case diagram. In this paper, we present our fea-
tured tool SAREUCD (Simple Automated REUCD),

which will automate the REUCD process and increase
the speed and accuracy of its application.

The remainder of this paper is organized as follows;
in Sect. 2 we present a brief introduction to use case
modeling and various use case authoring styles and struc-
tures. Section 2 also describes why inconsistencies
exist in use case models and what their potential con-
sequences are. Section 3 presents a detailed description
of the proposed use case description structure SSUCD.
Section 4 provides an overview of how use cases de-
scribed in the SSUCD form can be used to systemat-
ically produce use case diagrams. An overview of the
tool SAREUCD is presented in Sect. 5. Section 6 dis-
cusses the design of the SSUCD modeling language and
its adherence to the quality principles that are expected
to exist in any modeling language. In Sect. 7 we pres-
ent a simplified Online Hockey Team Store system to
demonstrate the application of SSUCD, REUCD and
SAREUCD. Finally, Sect. 8 concludes and discusses
future work.

2 Background

2.1 Brief introduction to use case modeling

This section presents a brief overview of use case mod-
eling. A use case model contains three main compo-
nents. Firstly, the use case diagram, which contains two
main components: use cases and actors. Use cases are
depicted as ovals, and serve as a visual summary of the
services that are offered by the system to its actors.
Actors are classes of users who can benefit from services
offered by the system. A use case diagram also shows the
relationships that exist between the use cases and the ac-
tors and between the use cases themselves. Secondly, the
use case descriptions. The use case descriptions essen-
tially describe the flow of events required to occur in
order for an actor to benefit from a service offered by

Fig. 1 The application of the
REUCD process to
systematically generate use
case diagrams from
descriptions

www.manaraa.com

Producing robust use case diagrams via reverse engineering 69

the corresponding use case [12]. There must be one use
case description corresponding to each of the use cases
depicted in a use case diagram. Traditionally, descrip-
tions are authored in textual form. Lastly, a use case
model makes use of a glossary component. The glossary
is not explicit to use case models; it is used for other
activities during development. The glossary will contain
the explanations of common terms used throughout a
project. The remainder of this paper will assume a basic
understanding of the fundamental notations utilized in
use case modeling.

2.2 Use case authoring styles

There have been many different approaches to author-
ing use case descriptions. Each approach is devised to
describe use cases at different levels of detail and struc-
ture. For example, use cases can be described using a
single short paragraph. Caution must be exercised while
describing use cases in such form as this approach tends
to assume that other stakeholders have a great degree
of domain knowledge, which is not always the case.
On the other hand, use cases can be described using
a “full blown” approach that mentions every possible
detail. Some approaches structure the use case descrip-
tions very carefully, while others do not incorporate any
structure. Johansson [27] analyzed and discussed prob-
lems that arise when attempting to construct a use case
model and write the corresponding descriptions of use
cases for a weather station system. The problems were
principally caused by a lack of guidelines for authoring
use case descriptions. The paper concludes by urging for
guidelines for use case modeling.

• A number of authors have developed such guide-
lines, principally: Achour et al. [8] examined two
different types of guidelines; styling guidelines (SGs)
and content guidelines (CGs). The styling guidelines
were mainly derived from current best practices such
as those presented in [15,16]. The styling guidelines
are used to improve the quality of use case struc-
tures. On the other hand, content guidelines were
mainly derived from linguistics, artificial intelligence
and previous experiences in applying Case Gram-
mars to requirements analysis. The content guide-
lines are used to indicate the expected contents of
use cases. The authors present an evaluation of their
work which comprises seven hypotheses, three of
which are related to CGs and the remaining four are
related to SGs. The experimental procedure utilized
69 software engineers who had professional experi-

ence and participated in a half day presentation on
use case authoring and modeling. The results of the
study conclude that use case authoring guidelines
generally improve the quality of the descriptions.
The authors emphasize that even though authoring
guidelines helped, they rarely lead to perfect use
cases. Therefore, the authors suggest that the use
case descriptions should be checked whenever qual-
ity is an issue.

• Firesmith [19] describes a broader range of guide-
lines. These guidelines fall into the following
categories: modeling tools and languages; model-
ing externals; modeling use cases; modeling use case
paths; and general guidelines.

• A number of use case authoring guidelines have been
devised to capture the requirements for special types
of systems. Anderson et al. [6] described styles of
documenting business rules in use cases. Constantine
[17] and Biddle et al. [9] described styles that lead to
‘essential’ use cases. Rebecca [45] has also promoted
a conversational style of authoring use cases.

• Cockburn [16] described a set of eighteen different
styles of writing use case descriptions, collected while
working upon various projects, matching one by Jac-
obson [25]. The authoring style proposed by Jacob-
son has heavily popularized due to its adoption by
RUP. The work presented by Bittner and Spence [10]
further developed this style of use case authoring.
However, this style in its current state experiences
several limitations:

a) The authoring style lacks the required amount of
structure to allow the use case descriptions to be
machine readable, which will impede the system-
atic process of:
• Generating use case diagrams from the descrip-

tions.
• Generating the ‘skeletons’ of use case descrip-

tions from the diagrams.
• Verifying the consistency between the use case

diagram and the descriptions.
b) There is no mechanism available to:

• Declare generalization relationships between
use cases.

• Declare generalization relationships between
actors.

• Declare abstract use cases.
• Declare abstract actors.
• Declare that a use case implements an abstract

use case..
• Allow an extension use case to reference the base

use case it extends.

www.manaraa.com

70 M. El-Attar, J. Miller

The structure proposed in this paper can be used to
overcome the limitations outlined above. The key fea-
ture of SSUCD is that it will ensure the consistency
between the use case descriptions and their correspond-
ing diagrams.

2.3 Maintaining the readability of use case descriptions

The core feature behind the popularity of use case mod-
els is the great deal of unstructured natural language
that the use case descriptions contain. The informality
contained in use case descriptions makes it accessible
by stakeholders who are not familiar with common pro-
gramming jargon and acronyms. Customers are often
not technical specialists and thus the informality in use
case descriptions allows them to read and review the use
case descriptions and provide feedback. Unstructured
natural language is an indispensable component of use
case descriptions. Unfortunately, it is impossible to for-
mally analyze use case descriptions that are completely
composed of unstructured natural language. Use case
descriptions become highly vulnerable to poor qual-
ity attributes such as inconsistencies, incorrectness and
incompleteness. Use case descriptions can be formally
analyzed only if they adhere to a formal structure. How-
ever, describing use cases using only formal constructs
will greatly reduce their readability and make them
inaccessible to many stakeholders. Therefore, a tradeoff
exists between the amount of unstructured natural lan-
guage and formal constructs that use case descriptions
may contain. The SSUCD structure provides a hybrid
solution to this problem. The SSUCD structure con-
tains a very limited set of formal constructs, the minimal
amount required, while allowing analysts the flexibility
and liberty of using as much unstructured natural lan-
guage as possible. The SSUCD structure will allow a
great deal of formal analysis to be performed on the
descriptions while retaining their readability. Further
structure can be added to the SSUCD descriptions in
order to generate other types of UML artifacts. For
example, the SUCD (Structured Use Case Descriptions)
form [50] adds more formality and structure to SSUCD
descriptions to allow the systematic generation of Activ-
ity diagrams.

2.4 The problem with inconsistencies in use case
models

Many researchers have determined that inconsistencies
in a use case model have harmful consequences. Incon-
sistencies can exist in use case models in various forms.
The consequences of an inconsistency depend on the
form that the inconsistency exists in:

• Anda et al. [5] outlined a taxonomy of the core
categories of defects in use case models. They dem-
onstrated that inconsistencies are a key category of
defects which severely hampers the overall quality
of a use case model. The consequences of the stated
forms of inconsistencies were also outlined, which
has shown to affect every aspect of the development
process; from producing wrong, missing and inac-
curate functionalities to producing systems that are
difficult to test.

• Chandrasekaran [14] has explained that inconsisten-
cies in a use case model are generally symptomatic
of one of two problems; Firstly, the use case model
might be handling concepts that are not defined
or understood properly. Secondly, there maybe an
ambiguity in the domain model.

• Lilly [34] and Bittner et al. [10] outlined a number
of inconsistencies that explicitly exist in use case
diagrams as well as other types of inconsistencies
that may exist throughout the use case model.
These authors have also explained the harmful con-
sequences of these inconsistencies. For example, in
[34], it is shown that an inconsistent system bound-
ary may cause designers to implement the behavior
of entities external to the system. This in turn re-
quires more effort from the development team than
is actually required, causing the project to fall behind
schedule and go over budget.

• Ambler [2] warns that inconsistencies in use case
models are usually a sign of missing or vague infor-
mation. The literature has repeatedly shown that
teams often fail due to a lack of details in the use case
model rather than too much detail [10]. Ambler also
warns that too many inconsistencies may cause the
use case model to become “out-of-date” and there-
fore becoming useless. Therefore, use case models
need to remain consistent to be effective in the devel-
opment process.

• Consistency has always been a sought after as an
essential quality attribute for use case models [4,8,
19,24,31,41]. Reviewing use case models is a highly
recommended practice [7,31,42], used to assure their
quality by assuring that they possess a great deal of
consistency.

• Other researchers have devised techniques to incor-
porate and ensure consistency in the use case mod-
els being developed. McCoy [36] introduces a tool,
which provides a template for modelers to input
information about their use cases into a repository.
The template ensures consistency during entry of
the information. Achour et al. [8] compiled a set of
styling and content guidelines to improve the qual-
ity of the use case descriptions. A number of these

www.manaraa.com

Producing robust use case diagrams via reverse engineering 71

guidelines are either directly or indirectly aimed at
ensuring consistency within the use case descrip-
tions. Butler et al. [13] introduced the concept of
refactoring use case models. Butler explained that
refactoring can improve the consistency of the use
case models. Ren et al. [40] has developed a tool
that implements the refactoring concepts presented
in [13].

It can be concluded that it is desirable to minimize incon-
sistencies within use case models. Using the SSUCD
structure and the REUCD process ensures that the use
case descriptions and their diagram(s) are consistent
with each other. For example, if the descriptions state
that a certain use case is associated with a certain actor,
then it will be ensured that an association relationship in
the use case diagram will be depicted linking the given
use case with the given actor. The SSUCD structure
and the REUCD process do not however ensure that
inconsistencies, present in the segments that are writ-
ten in unstructured natural language, will be detected or
eliminated. These segments require domain expertise to
verify their consistency. For example, if a use case states
that a theatre’s seating capacity is 1200 while another use
case states that the given seating capacity is 1400, then
this type of inconsistency requires manual inspection (or
review) to be detected and eliminated.

2.5 Inconsistencies: a closer look

An obvious argument at that point would be: if the
heart of the use case model is in the descriptions while
the diagrams only serve as a visual roadmap then:

Why bother with the use case diagram? Why not
just use the use case descriptions only to drive the
development process? In such a case, when only
the descriptions are considered, then ensuring the
consistency between the use case descriptions and
their diagrams is not important!

Even though this argument might be valid for very
trivial systems, there still remain several problems if only
the use case descriptions are considered. If the system
is very complex, then a use case description might span
over five pages to be adequately described it [10]. In
such case, if a team member wanted to know the actors
that are associated with a given use case, it would be
more efficient and accurate to simply look up this infor-
mation in the diagram rather than going through several
pages of text. Use case diagrams are able to provide an
overview of a system at a glance; while examining a set
of use case descriptions cannot. Therefore, stakeholders

might be misled about the general purpose of the system
if the use case diagram did not accurately represent the
descriptions. Hence, use case diagrams remain an indis-
pensable component of use case models, and therefore if
a use case diagram does not have an accurate represen-
tation of the descriptions, then this will lead to the design
of a faulty system. Moreover, since the SSUCD struc-
ture allows use case descriptions to be machine read-
able, a great deal of information can be automatically
extracted from the descriptions, such as the use cases
that are included by a given base use case.

3 Simple structured use case description (SSUCD)

In this section we describe our proposed structure
(SSUCD) for writing use case descriptions. Use cases
described using the SSUCD structure contains four main
sections, these are: (a) Use Case Name, (b) Associated
Actors, (c) Description, (d) Extension Points and Ex-
tended Use Cases. With the exception of the “Descrip-
tion” section, these sections utilize a handful of
keywords to embed the required structure. All key-
words are written in uppercase for readability purposes.
The “Description” section on the other hand is pop-
ulated using natural language to allow for maximum
flexibility and expressiveness by use case authors. Other
sections can be added to cater to specific needs; the
additional sections must be contained as subsections
of the “Description” section. There have many tem-
plates presented in the literature for describing use cases
[15,23,24,31,35,42]. The structured sections incorpo-
rated by SSUCD are the common sections found in
many templates presented in the literature.

3.1 A brief introduction to the elements of SSUCD

For a fully detailed reference guide to SSUCD and its
syntax, we refer interested readers to [49]. The subse-
quent sections will briefly present the structural ele-
ments of SSUCD and how they are used to map use
case descriptions to diagrams (see Table 1), which is fur-
ther illustrated using the Online Hockey Store System
presented in Sect. 7.
(a) Use case name section:
The “Use Case Name” section states characteristic prop-
erties about a given use case. This section starts with the
label “Use Case Name:”.
Structural elements and keywords:
a) The name of the use case:

The “Use Case Name” section must state the name
of the use case.
b) If the use case is abstract:

www.manaraa.com

72 M. El-Attar, J. Miller

Table 1 Quality principles that should be present in modeling
languages

Simplicity The language does not contain any
unnecessary complexity

Uniqueness There are no overlapping features or
redundant ones

Consistency The language elements and features
allow the required goals to be met

Seamlessness The ability to generate code from the
models

Reversibility Changes at any point in the develop-
ment can be propagated back to the
models

Scalability The ability to model large and small
systems

Supportability The ability for humans to utilize the
language and the availability of tool
support

Reliability The language promotes the develop-
ment of reliable software

Space economy Models produced must be concise,
showing the required information with-
out clustering the view

This is stated using the keyword ABSTRACT. If the
use case is not abstract then this keyword is omitted. On
the other hand, if the use case implements an abstract
use case, then this is stated using the keyword IMPLE-
MENTS followed by the name of the abstract use case.
Similarly, if the use case does not implement any abstract
use cases, then this keyword is omitted.
c) If the use case specializes other use cases:

This is stated using the keyword SPECIALIZES fol-
lowed by the name of the parent use case. If the use case
does not have any parents, then this keyword is omitted.
Mapping information and examples:
a) The name of the use case:

The name stated in the “Use Case Name” section
must have a use case symbol (an oval) in the diagram
with a matching name (see Fig. 2).
b) Abstract use cases and their implementation:

The name of an abstract use case is displayed in italic
font in the diagram. A use case implementing an abstract

use case creates a generalization relationship arrow in
the diagram, originating from the implementing use case
and directed towards the abstract use case (see Fig. 3).
c) Generalization between use cases:

The use case name as specialized by a child use case
creates a generalization relationship link between the
involved use cases, originating from the child use case
and directed towards the parent use case (see Fig. 4).
(b) Associated actors section:

Actors are associated with use cases to perform the
described behavior and to achieve a certain goal. Actors
can be associated with use cases for various reasons.
Each use case must specify the actors that are involved
with it. The “Associated Actors” section is used to list
the involved actors with only commas separating them.
Mapping information and example:

Actors listed in this section must have an association
relationship link connecting the use case and the corre-
sponding actors in the diagram (see Fig. 5).
(c) Description section:

The “Description” section contains the core behavior
of the use case. As mentioned earlier, the “Description”
section is intentionally designed to be populated using
natural language to allow use case authors utmost flexi-
bility with respect to describing their use cases. Another
reason is to minimize the amount of learning required
by the users of SSUCD. If an author needs to add a new
section, the new section is simply written using natural
language as part of the “Description” section.
Structural elements and keywords:

There is only one keyword in this section which states
that the given use case includes another use case. An
include relationship is stated using the keyword IN-
CLUDE followed by the name of the inclusion use case
enclosed in angled brackets “INCLUDE < inclusion use
case name>”.
Mapping information and example:

An INCLUDE statement present in the “Descrip-
tion” section of a use case creates an include relation-
ship link originating from the base use case and directed

Fig. 2 Use case name and its
representation

Use Case Name:

Buy On Sale University Merchandise

Fig. 3 Abstraction and
implementation in use cases
and their representation

Use Case Name:
ABSTRACT
Buy University Merchandise

Use Case Name:

Buy On Sale University Merchandise
IMPLEMENTS Buy University
Merchandise Online

www.manaraa.com

Producing robust use case diagrams via reverse engineering 73

Fig. 4 Generalization
between use cases its
representation

Use Case Name:

Buy University Merchandise

Use Case Name:

Buy On Sale University Merchandise
SPECIALIZES Buy University
Merchandise

Fig. 5 Associations between
use cases and actors and its
representation

Use Case Name:
Example:

Enroll New Member

Associated Actors:
Librarian, Member

Fig. 6 The include
relationship represented in
the use case description body

Use Case Name:
Enroll New Member

Description:
… before a new member can be
enrolled, INCLUDE <Authenticate
User> must be performed to
authenticate the staff …

towards the inclusion use case stated in the INCLUDE
statement (see Fig. 6).
(d) Extension points section and extended use cases
section:

The “Extension Points” section lists all the public
extension points that belong to the given use case. Al-
though there are two types of extension points; public
and private, only public extension points appear on the
use case diagram. Hence, private extension points can
be described using natural language within the Descrip-
tion “section” without the need to add further structure.
The “Extended Use Cases” section lists all the use cases
that the given use case extends.
Structural elements and keywords:

• The extension points section
Base use cases that are extended should not have
any knowledge of their extension use cases. Base
use cases only provide public extension points for
extension use cases to specify the locations where the
extended behavior will be inserted. This is because
base use cases are expected to be complete even
without the incorporation of the extension use cases.
Public extension points listed under an “Extension
Points” section are separated using carriage return.

• The Extended Use Cases Section
Conversely, extension use cases are expected to have
knowledge of the base use cases they extend. The

“Extended Use Cases” section lists the base use cases
that the given use case extends. An extended use case
is stated using the keyword “Base UC Name:” fol-
lowed by its name. If an extension use case extends a
base use case at a given public extension point, the
extension point is stated using the keyword “Exten-
sion Point:” followed by the name of the extension
point. Therefore, using the “Extension Point” con-
struct is optional since stating a public extension
point for a given extend relationship is optional. If
a condition needs to be set for an extend relation-
ship, this is stated using the keyword “IF” followed
by the condition written in natural language. Specify-
ing a condition for an extend relationship is optional.
Hence, using the “IF” construct is also optional (see
Fig. 7).

3.2 Formalizing the SSUCD structure grammar

It is essential for the grammar and constructs of the
SSUCD structure to be formalized. Formalizing the
SSUCD structure will provide a strict guideline to use
case authors when composing use case descriptions, so
that there is no disagreement or ambiguity as to what is
allowed and what is not. The grammar of the SSUCD
structure is defined in E-BNF and can be located at [49].

www.manaraa.com

74 M. El-Attar, J. Miller

Fig. 7 The extend
relationship represented in
the use case description body

Use Case Name:

Buy University Merchandise Online
Extension Points:

out of stock
Use Case Name:

Product Out of Stock
Extended Use Cases:

Base UC Name: Buy University
Merchandise Online
Extension Point: out of stock
IF selected product is out of stock

Example:

4 Consistency and mapping rules between use case
descriptions and diagrams

In this section we will introduce the REUCD (Reverse
Engineering of Use Case Diagrams) process which is
used to systematically map SSUCD’s structural con-
structs to diagrammatic notations that form use case
diagrams. This systematic process is automated using
the tool SAREUCD (see Sect. 5), which will ensure the
consistency and speed of the process.

The process of generating use case diagrams from use
case descriptions and vice versa is analogous to gener-
ating complete and accurate UML class diagrams from
code and generating code structures from UML class
diagrams. The reason UML class diagrams cannot be
used to generate complete programs is because they
act as a visual summary of a program’s static structure.
UML class diagrams are at a higher level of abstraction
compared to code. On the other hand, a complete pro-
gram will contain more than enough details required to
generate complete and accurate UML class diagrams.

Use case descriptions (analogous to code) contain
far more details than use case diagrams (analogous to
class diagrams). Use case diagrams are at a higher level
of abstraction than the descriptions. Therefore, given
a set of use case descriptions, a complete and accu-
rate use case diagram can be systematically produced
(see Fig. 8a). However, if modelers choose to create use
case diagrams manually first, which is often the case; a
‘skeleton’ of the use case descriptions can be system-
atically produced (see Fig. 8b). Detailed descriptions
of the use case are later added manually by analysts
to ‘flesh out’ the generated ‘skeletons’. After the use
case descriptions are complete, an updated version of
the use case diagram can be systematically generated.
Users of SSUCD and REUCD will not be burdened
with performing these transformations since they will
be carried out by the tool SAREUCD.

Consistency rules and mapping concepts between use
case description structures and use case diagrams are

described in detail at [49]. We encourage interested
readers to review the referenced document for further
details.

5 Tool support using SARUECD

Tool support is essential for the effective application of
the REUCD process. For a highly complex software sys-
tem, the corresponding use case model may contain up
to four hundred use cases. Use cases are not sorted in
any chronological order. Relationships linking use cases
with other use cases and actors are also not sorted in any
fashion either. Therefore, performing the REUCD pro-
cess for such a system manually is a very cumbersome
task that is error prone. Even for a relatively smaller
use case model, one that contains twenty use cases, the
application of the REUCD process is still vulnerable to
mistakes.

The tool SAREUCD (Simple Automated REUCD)
supports the generation of use case diagrams from use
case descriptions and vice versa. In order to generate use
case diagrams from use case descriptions, SAREUCD
is loaded with a use case description file. SAREUCD
parses through the descriptions of all the given use case
descriptions and actors and generates a file containing
the corresponding use case diagram. The use case dia-
gram is generated in XML in order to be viewable by
most UML modeling tools. However, since the format of
the generated XML files generated by UML modeling
tools vary, the XML files generated by SAREUCD is
only viewable by MagicDraw 10.5. Conversely, in order
to generate use case description ‘skeletons’, SAREUCD
is loaded with use case diagram file. The use case diagram
can be generated by a UML modeling tool. The use case
diagram must be in XML format; however this is not
an issue since almost all UML modeling tools generate
information about their models in XML format. Upon
parsing the diagram or description files, the properties
of the given use case model is displayed (see Fig. 9).

www.manaraa.com

Producing robust use case diagrams via reverse engineering 75

Fig. 8 Systematically
generating use case diagrams
from descriptions and
description skeletons from
diagrams

Fig. 9 A screenshot of
SAREUCD after
transforming the descriptions
to an object model

It is unpractical to require or expect use case
authors to spend a great deal of time and effort learning
the syntax of SSUCD and its consistency and mapping
rules, especially since use case authors often have a busi-
ness background rather than a technical background.
Even if the syntax of SSUCD and its mapping rules
were understood, creating the use case descriptions and
their diagrams manually is error prone. Authors may
inject many syntactical and inconsistency errors in the
descriptions. It is highly desirable to reduce the time
and effort spent learning SSUCD. Therefore, SARE-
UCD provides a simple GUI interface for creating and

editing use case descriptions (see Fig. 10). This saves
authors the time to learn many keywords and other syn-
tax rules.

6 SSUCD modeling language design

Languages are designed to achieve a purpose, whether
it is to create programs or models. In this paper we pre-
sented SSUCD, a modeling language used for analytical
purposes. To create a high quality modeling language,

www.manaraa.com

76 M. El-Attar, J. Miller

Fig. 10 A use case description

certain quality principles must be considered and embed-
ded into the modeling language. The presence of these
quality attributes in any modeling language is essential
to its usability and its adoption for widespread use. The
literature has provided many guidelines for construct-

ing languages. Paige et al. [51] presented guidelines and
quality principles specifically for modeling languages.
These quality principles are summarized in Table 1. This
section will discuss the design of the SSUCD modeling
language and its adherence to these quality principles.

Simplicity
The fundamental purpose of SSUCD is to ensure the

consistency between the use case diagrams and their
descriptions. All language constructs are designed with
this goal in mind. If there are any segments in the use
case descriptions that are not reflected in the diagrams,
then they are not structured. Instead, they are popu-
lated using natural language, which is the original and
most flexible method of authoring. The following is a
summary of the entire list of constructs provided by
SSUCD, sorted by their corresponding section, and how
they affect the presentation and the consistency between
the descriptions and the diagrams (see Table 2):

All language constructs are aimed towards achieving
the ultimate goal of consistency between the descrip-
tions and the diagrams. There are no constructs in
SSUCD that do not contribute towards this goal. Fur-
thermore, the grammar indicates that many sections,
such as the “Extension Points”, can be entirely omitted
if not required, which further simplifies the authoring
task.

Table 2 A summary of SSUCD’s language constructs and their purposes

Section Keyword Diagram representation

Use case name ABSTRACT Abstract use cases appear in italic font
in the diagrams

SPECIALIZES Results in the creation of generaliza-
tion relationship links in the diagrams

IMPLEMENTS Results in the creation of generaliza-
tion relationship links in the diagrams

The name of the use case in natural language A use case with the given name is
shown in the diagram

Description INCLUDE The INCLUDE statement can be
embedded within the text, and it will
result in the creation of an include rela-
tionship link in the diagram

Extended use cases Base UC name Results in the creation of an extend
relationship link in the diagrams

Extension point Optional to the user. The extension
point name is displayed on the extend
relationship link

IF Optional to the user. The condition
is displayed on the extend relationship
link

Extension points The name of a public extension point Results in the display of an extension
point within the oval of the given use
case in the diagram

www.manaraa.com

Producing robust use case diagrams via reverse engineering 77

Uniqueness
As shown above in Table 2, there are no overlapping

features provided within SSUCD. All language features
serve a unique purpose and are vital to ensure consis-
tency, hence there is also no redundant features.

Consistency
Using the list of features provided by SSUCD, use

case authors can ensure the consistency between the
use case descriptions and the diagrams. This is evident
by the ability of the tool SAREUCD to generate use
case diagrams from the descriptions and vice versa.

Seamlessness
This quality is intended for design modeling languages

that are required to provide an easy and direct transition
to code. Hence, this quality is not directly applicable to
SSUCD since it is an analytical modeling language that
is not intended to show a solution which results in code,
but rather to provide an analytical view of what the
system is required to do. However, for the purposes of
SSUCD, it can be shown from Table 2 that SSUCD con-
structs can be mapped directly to the notation of use
case diagrams. Therefore, for a given set of descriptions,
there is no complex computation required to develop
their corresponding diagram.

Reversibility
The REUCD process utilizes the SSUCD constructs

to systematically generate use case diagrams from the
descriptions. Moreover, the REUCD process can also
be reversed to systematically produce use case descrip-
tion (skeletons) from use case diagrams. Both these
process (forward and reverse) are automated using the
tool SAREUCD. Reversibility of SSUCD is discussed
in great detail at [49].

Scalability
Use case modeling, in its current form, is used to

model very large systems. However, these large mod-
els suffer from very poorly written descriptions since
they are embedded with numerous inconsistency errors.
SSUCD does not impede or hinder the production of
use case descriptions. In fact, it provides an interface
that guides the author while developing the descriptions.
SSUCD, along with SAREUCD, encourages the author
to consider aspects that would normally be ignored if the
use cases were to be authored in a traditional fashion.
For example, if a given base use case includes another
inclusion use case, SSUCD requires the authors to con-
sider where exactly in the behavior of the base use case

will the behavior of the inclusion use case be performed.
With regards to the additional effort required for creat-
ing syntactically correct descriptions, and avoiding the
injections of human errors, SAREUCD eliminates this
problem in two ways; it guides the authoring process to
prevent the injection of errors and it performs all the
required syntax checks to notify the user of any existing
errors and how to correct them. Therefore, it can be
argued that using SSUCD can only help the scalabil-
ity of use case modeling as a functional requirements
elicitation technique. The simplicity of SSUCD allows
it be also used to model small systems as well. This is
evident by the Online Hockey Store System case study
presented in Sect. 7, which can be considered a relatively
simple system.

Supportability
Perhaps the most important quality principle; if users

do not have the adequate support to be able to use
the language, then the language is useless. Users of any
language, whether it is a modeling language or a pro-
gramming language require tool support to help them
produce models and programs. Tool support provided by
SAREUCD is essential to the usability of SSUCD and
the execution of the REUCD process. As mentioned
previously, it is unrealistic to expect users of SSUCD of
review its E-BNF syntax specifications in order to use it.
SAREUCD was designed to perform most of the duties
directly related to adopting SSUCD when describing
use cases, whereby users need to be only concerned with
writing the use cases instead of worrying about adhering
to syntax rules.

Reliability
Producing reliable software is the principal objective

of SSUCD. SSUCD ensures that the two major compo-
nents of use case models are consistent. Consequently,
understandability of use case models will significantly
improve, which is vital to the success of a project that
utilizes some form of a use case driven development
process. Reliability and the cost of inconsistencies are
discussed in great detail in Sects. 2.4–2.6.

Space economy
SSUCD’s structural elements exist only within the

use case descriptions. Visually, the presence of SSUCD
within the textual descriptions is only in the form of a
handful of English keywords. Therefore, the size of the
use case descriptions in large will visually remain the
same whether or not they were structured with SSUCD.
Viewing the descriptions with SAREUCD further en-
hances their readability since SAREUCD hides a large

www.manaraa.com

78 M. El-Attar, J. Miller

Fig. 11 The use case diagram
after three use case
descriptions are read

Fig. 12 The use case diagram
after five use case descriptions
are read

subset of SSUCD’s keywords and structure to present
the descriptions in a more natural form (see Fig. 10).

7 Online hockey team store system case study

The following case study is used to demonstrate how
use case descriptions are presented in the SSUCD form
and to demonstrate the application of the REUCD pro-
cess. This case study will also illustrate the concepts,
described in Sects. 3 and 4, to systematically generate
use case diagrams from use case descriptions using the
REUCD process. The case study is about a simplified
Online Hockey Team Store system. The presented sys-
tem is simplified for clarity, yet complex enough for the
purposes of demonstrating the SSUCD structure and
the REUCD process.

The system allows customers to purchase tickets for
upcoming hockey games. To buy a ticket, a customer
needs to choose the game he/she would like to attend
from the team’s online calendar. The customer selects
the desired section in an area where he/she would like
their tickets to be along with the quantity of tickets
requested. Upon retrieval of this information, the sys-
tem will search the database for the requested tickets.
If the tickets are available, the customer is prompted
to either accept or reject the offered seats. If the cus-
tomer accepts the offered seats, the customer is then
directed to a billing page where the purchase transac-
tion can take place. Otherwise, if the tickets are not
available, the customer is informed about the unavail-
ability and then requested to submit another search for
tickets. Occasionally, tickets for certain games in certain

sections of the hockey arena may go on sale. Unlike reg-
ular priced tickets, a customer may purchase a maximum
of six on sale tickets. The system also allows customers
to purchase team merchandise such as hockey jerseys,
sticks, and pucks. When choosing a merchandise item,
the customer may provide customization requests for an
extra cost. Available customization options depend on
the type of item. For example, if the item was a hockey
jersey, the customer may choose to have his/her name
sewed on the jersey along with their favorite number.
Meanwhile, if the item was a steel pen, the customer
may have a name (or other words) engraved on the
pen. To boost merchandise sales, a customer may en-
ter a ticket number while purchasing merchandise for a
chance to win a grand prize. A customer may purchase
tickets and team merchandise using a credit card or a
team hockey card. If the customer chooses to purchase
using a credit card, an external credit card authorization
system is utilized to verify the validity of the given credit
card information. Meanwhile, if the customer chooses to
purchase using a team hockey card, the customer is re-
quested to enter a PIN. The system internally verifies
the PIN with the associated hockey team card to ap-
prove the transaction. For any purchase, the customer is
requested to enter billing information. The billing infor-
mation is used for market survey purposes and delivery
of tickets and team merchandise. Billing information
would include the customer’s name, phone number and
address.

This simplified system contains seven use cases and
two actors. The formal use case and actor descriptions
are presented below. For illustrative purposes, the evo-
lution of the use case diagram is shown below (see
Figs. 11–13).

www.manaraa.com

Producing robust use case diagrams via reverse engineering 79

Actors:
1) Actor: Customer
Brief Description: This actor may purchase
hockey tickets at regular price or on sale. This
actor may also purchase team merchandise.
The actor will be requested to pay using a credit
card or a team hockey card.

2) Actor: Credit Card Validation System
Brief Description: This actor ensures the
validity of a given a credit card number and
an expiry date.

Use Cases:

1) Use Case Name: Buy Tickets
Associated Actors: Customer
Descritpion:
Preconditions:
At least one game and one seat is available
Brief Description: This use case is responsible
for allowing customers to purchase as many
tickets as they need in any section.
Basic Flow:
The system presents the different sections that
exist in the arena and the price for a single
seat in each section. The customer then enters
information about the required tickets and
submits order request. The system searches
for the required tickets and prompts the Cus-
tomer to accept or reject the offered seats.
The customer accepts to purchase ticket and
INCLUDE <Perform Transaction> to com-
plete the transaction.
Alternative Flows:
• If tickets not available, the system notifies

the Customer that the requested tickets are
unavailable and the use case restarts.

• If the tickets were rejected, the system noti-
fies the Customer that the cancellation has
been confirmed and the use case restarts

Postconditions: If tickets are issued, these seats
become unavailable for future Customers

2) Use Case Name: Buy On Sale Tickets
SPECIALIZES Buy Tickets
Associated Actors:
Customer
Description:
Preconditions: At least one game and one seat
is available
Brief Description: This use case is responsible
for allowing Customers to purchase a maxi-
mum of six on sale tickets.
Basic Flow:
The system presents the different sections that
exist in the arena and the price for a single seat
in each section. The Customer then indicates
interest to purchase on sale tickets and sub-
mits an order to request tickets. The system
retrieves the information about the required
tickets and searches for them. The system
prompts the Customer to accept or reject the
offered seats. The Customer accepts to pur-
chase tickets and INCLUDE <Perform Trans-
action> is performed to complete the transac-
tion.
Alternative Flows:
• If the tickets not available, the system noti-

fies the Customer that the requested tickets
are unavailable and the use case restarts.

• If the Customer requested too many tick-
ets, the system notifies the Customer that
the requested number tickets exceed the
maximum allowed of six and the use case
restarts.

• If the tickets were rejected, the system noti-
fies the Customer that the cancellation has
been confirmed and the use case restarts

Postconditions: If tickets are issued, these seats
become unavailable for future Customers

3) Use Case Name:
ABSTRACT
Perform Transaction
Brief Description: This use case is responsible
for allowing customers to pay for their selected
items
Preconditions: At least one ticket is requested
for purchase
Postconditions:
If tickets are issued, these seats become unavail-
able for future customers
If merchandise is sold, the merchandise data-
base is updated

www.manaraa.com

80 M. El-Attar, J. Miller

4) Use Case Name:
Purchase With Credit Card
IMPLEMENTS Perform Transaction
Associated Actors: Customer, credit card vali-
dation system
Preconditions: At least one item is requested
for purchase
Brief Description: This use case is responsi-
ble for allowing Customers to pay for their se-
lected items using a credit card
Basic Flow:
The system requests Customer to enter bill-
ing information. The Customer then enters the
billing information and selects to pay using a
credit card. Upon entering and submitting the
credit card information, the given credit card
is validated by the Credit Card Validation Sys-
tem and a receipt is printed.
Alternative Flows:
• If the credit card information is incorrect,

the system notifies the Customer that the
credit card information is incorrect and re-
quests the Customer to enter the credit card
information once again.

Postconditions: If tickets are issued, these seats
become unavailable for future Customers

5) Use Case Name:
Purchase Using Hockey Team Card
IMPLEMENTS Perform Transaction
Associated Actors: Customer
Preconditions:
At least one item is requested for purchase
Customer has a hockey team card with a set
PIN
Brief Description: This use case is responsi-
ble for allowing Customers to pay for their
selected items using a preauthorized payment
plan setup on their hockey team card
Basic Flow:
The system requests Customer to enter the bill-
ing information. The Customer then enters the
billing information and selects to pay using a
hockey team card. The Customer then enters
team hockey team card number and PIN. The
system verifies the card number and PIN and
prints a receipt.
Alternative Flows:
If the card information is invalid the system
notifies the Customer that the hockey card
information is incorrect and requests the Cus-
tomer to enter the hockey card information
once again.
Postconditions: If tickets are issued, these seats
become unavailable for future Customers

6) Use Case Name:
Buy Team Merchandise
Associated Actors:
Customer
Brief Description: This use case is responsible
for allowing customers to buy team merchan-
dise such as jersey, hockey sticks, mugs and
other collectibles
Basic Flow: The system displays catalogue with
all team merchandise items. The Customer
then selects the desired items to purchase, the
desired quantity and any desired customiza-
tion information. The INCLUDE <Perform
Transaction> use case is performed to com-
plete the transaction. The Customer finally en-
ters a ticket number (if one is available) for a
chance to win.
Extension Points:
Grand Prize Giveaway

www.manaraa.com

Producing robust use case diagrams via reverse engineering 81

Fig. 13 The use case diagram
after all use cases and actors
are read

7) Use Case Name:
Winning Ticket Entered
Associated Actors:
Customer
Extended Use Cases:
Base UC Name: Buy Team Merchandise
Extension Point: Grand Prize Giveaway
IF the winning ticket was entered
Brief Description: This use case is responsible
for the situation where a winning ticket was
entered.
Basic Flow:
If the winning ticket was entered, the system
notifies the Customer that they won the grand
prize. The Customer enters phone number for
a service representative to call

The final use case diagram (Fig. 13) was systematically
generated despite the descriptions containing very lim-
ited structure. Therefore, as discussed in Sect. 6, the
ultimate goal was achieved by providing the minimal
amount of structure without adding unnecessary com-
plexities. The use case descriptions file and the XML file
representing the diagram may be found at [49].

8 Conclusion and future work

A quality use case model improves every aspect of the
development cycle. There are several quality attributes
that should exist in every use case model. A use case
model needs to be precise and unambiguous so that all
stakeholders would have a common understanding of
the capabilities and constraints of the system. A use case

model needs to be analytical and should not contain any
assumptions about the design or implementation. An
analytical use case model should only describe what a
system should do. Another essential quality attribute is
consistency, which is the focal point of this paper. Many
researchers and practitioners warn about the harmful
consequences of inconsistencies in use case models.
Inconsistencies can negatively affect every aspect of the
development cycle as well as the stakeholders. Relying
on heuristics and experience to manually detect incon-
sistencies can be cumbersome, error prone and requires
a great deal of expertise to be effective. Such exper-
tise is often not readily available. Use case descriptions
require necessary structure to allow the automated gen-
eration of accurate use case diagrams and the detection
of inconsistencies that may exist between them, while
allowing analysts the liberty and flexibility to describe
a system using natural language, which will make the
model easy to comprehend. The added structure will
also allow use case descriptions to be machine readable.
Consequently, this will allow tools (such as SAREUCD)
to systematically extract a great deal of information from
the descriptions.

This paper proposes a structure (SSUCD) for describ-
ing use cases. The structure serves as a guideline to use
case authors. The SSUCD form along with the REUCD
process enables the systematic generation of use case
diagrams and ensures consistency between the descrip-
tions and their diagrams. The generated diagrams will
be complete and provide an accurate representation of
the use case descriptions. This process is automated by
SAREUCD. The REUCD process may also be reversed,
where the use case diagram is constructed before the use
case descriptions. In that case, SAREUCD can automat-

www.manaraa.com

82 M. El-Attar, J. Miller

ically generate use case description ‘skeletons’ from use
case diagrams. Analysts will then need to manually fill
in the details of each use case description. After filling
the details, SAREUCD can detect any inconsistencies
between the diagrams and the descriptions and notify
the analysts about these inconsistencies.

Future work can be directed towards developing a
semi-systematic approach that will convert SSUCD use
cases into SUCD use cases [50]. The SUCD structure
contains for more constructs and hence has a greater
set of features. SUCD provides analysts with the capa-
bility of precisely describing the workflows underlying
use cases and automatically generating the correspond-
ing UML Activity Diagrams. Future work can also be
directed towards incorporating SAREUCD into a main-
stream UML modeling which allows the widespread use
of SSUCD and REUCD.

References

1. Adolph, S., Bramble, P.: Patterns for Effective use Cases.
Addison-Wesley (2002)

2. Ambler, S.: http://www.agilemodeling.com/essays/when
IsAModelAgile.htm

3. Anda, B., Dreiem, H., Sjøberg, D., Jørgensen, M.: Esti-
mating software development effort based on use cases—
experiences from industry. Submitted to UML’2001 (Fourth
International Conference on the Unified Modeling Lan-
guage)

4. Anda, B., Sjøberg, D., Jørgensen, M.: Quality and under-
standability in use case models. In: Lindskov Knudsen, J.
(ed.) 15th European Conference Object-Oriented Program-
ming (ECOOP), pp. 402–428. Springer, Budapest (2001)

5. Anda, B., Sjøberg, D.I.K.: Towards an inspection technique
for use case models. In: Proceedings of the 14th Interna-
tional Conference on Software engineering and Knowledge
Engineering, pp. 127–134 (2002)

6. Anderson, E., Bradley, M., Brinko, R.: Use case and busi-
ness rules: styles of documenting business rules in use cases.
Addendum to the Object-oriented programming, systems,
languages, and applications conference (1997)

7. Armour, F., Miller, G.: Advanced Use Case Modeling. Addi-
son-Wesley (2000)

8. Ben Achour, C., Rolland, C., Maiden N.A.M., Souveyet, C.:
Guiding use case authoring: results of an empirical study. In:
Proceedings IEEE Symposium on Requirements Engineer-
ing. IEEE Comput. Soc, Los Alamitos (1999)

9. Biddle, B., Noble, J., Tempero, E.: Essential use cases and
responsibility in object-oriented development. In: Proc. of
25th CRPITS, Vol. 24, Issue 1 (2002)

10. Bittner, K., Spence, I.: Use Case Modeling. Addison-Wesley,
MA (2002)

11. Boehm, B.: Software Engineering Economics. Prentice-
Hall, Englewood Cliffs (1981)

12. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling
Language User Guide. Addison-Wesley (1999)

13. Butler, G., Xu, L.: Cascaded refactoring for framework evo-
lution. In: Proceedings of 2001 Symposium on Software
Reusability, pp. 51–57. ACM Press, (2001)

14. Chandrasekaran, P.: How use case modeling policies have
affected the success of various projects (or how to improve
use case modeling). Addendum to the 1997 ACM SIGPLAN
conference on Object-oriented programming, systems, lan-
guages, and applications (1997)

15. Cockburn, A.: Writing Effective Use Cases. Addison-Wesley
(2000)

16. Cockburn, A.: Goals and use cases. J. Object-Oriented Pro-
gram. 10(5), (1997)

17. Constantine, L.L.: Essential modeling: use cases for user
interfaces. ACM Interact. 2(2), 34–46 (1995)

18. Fagan, M.E.: Design and code inspections to reduce errors
in program development. IBM Systems J. 15(3), 182–211
(1976)

19. Firesmith, D.G.: Use case modeling guidelines. In: Proceed-
ings of Technology of Object-Oriented Languages and Sys-
tems – TOOLS 30. IEEE Comput. Soc, Los Alamitos (1999)

20. Gilb, T., Graham, D.: Software Inspection. Addison-Wes-
ley, Reading (1993)

21. Gomaa, H.: Designing Software Product Lines with UML.
Addison Wiley Professional (2004)

22. Gomaa, H.: Designing Concurrent, Distributed, and Real-
Time Applications with UML. Addison Wiley (2000)

23. Harwood, R.J.: Use case formats: Requirements, analysis,
and design. J. Object-Oriented Program. 9(8), 54–57 (1997)

24. Jaaksi, A.: Our Cases with use cases. J. Object-Oriented Pro-
gram. 10(9), 58–64 (1998)

25. Jacobson, I. et al.: Object-Oriented Software Engineering. A
Use Case Driven Approach. Addison-Wesley (1992)

26. Jacobson, I., Ericsson, M., Jacobson, A.: The Object Advan-
tage. ACM Press (1995)

27. Johansson, A.: Confusion in writing use cases. In: Proc. of
the 2nd International Conference on Information Technol-
ogy for Application (ICITA 2004)

28. Kaner, C., Bach, J., Pettichord, B.: Lessons Learned in Soft-
ware Testing. Wiley, New York (2003)

29. Kroll, P., Kruchten, P.: The Rational Unified Process made
Easy: a Practitioner’s Guide to the RUP. Addison-Wesley
(2003)

30. Kruchten, P.: The Rational Unified Process: an Introduction,
2nd edn. Addison Wesley Longman Inc. (1999)

31. Kulak, D., Guiney, E.: Use Cases: Requirements in Context.
Addison-Wesley (2000)

32. Larman, C.: Applying UML Patterns: an Introduction to
Object-Oriented Analysis and Design and the Unified Pro-
cess, 2nd edn. Prentice Hall (2001)

33. Leffingwell, D., Widrig, D.: Managing Software Require-
ments: a Unified Approach. Addison-Wesley (2000)

34. Lilly, S.: Use case pitfalls: top 10 problems from real projects
using use cases. In: Proceedings of TOOLS USA ’99. IEEE
Computer Society (1999)

35. Mattingly, L., Rao, H.: Writing effective use cases and
introducing collaboration cases. J. Object-Oriented Program.
11(6), 77–79, 81–84, 87 (1998)

36. McCoy, J.: Requirements use case tool (RUT). In: Com-
panion of the 18th Annual ACM SIGPLAN conference
on Object-Oriented Programming, Systems, Languages, and
Applications, pp. 104–105 (2003)

37. OMG. UML 2.0 Infrastructure Specification. http://www.
omg.org/docs/ptc/03–09–15.pdf (2003)

38. Overgraad, G., Palmkvist, K.: Use Cases Patterns and Blue-
prints. Addison-Wesley (2005)

39. Rational Software: Rational Unified Process Version
2002.05.00 (2002)

40. Ren, S., Butler, G., Rui, K., Xu, J., Yu, W., Luo, R.: A proto-
type tool for use case refactoring. In: Proc. of the 6th Inter-

www.manaraa.com

Producing robust use case diagrams via reverse engineering 83

national Conference on Enterprise Information Systems, pp.
173–178. Porto (2004)

41. Rosenberg, D., Scott, K.: Use Case Driven Object Modeling
with UML. Addison-Wesley (1999)

42. Schneider, G., Winters, J.: Applying Use Cases—A Practical
Guide. Addison-Wesley (1998)

43. Shull, F., Rus, I., Basili, V.: How perspective-based read-
ing can improve requirements inspections. IEEE Com-
put. 33(7), 73–79 (2000)

44. Sommerville, I.: Software Engineering, 5th edn. Addison-
Wesley (1996)

45. Wirfs-Brock, R.: Designing Scenarios: Making the Case for
a Use Case Framework. Smalltalk Report, Nov.–Dec., 1993.
SIGS Publications

46. Wohlin, C., Korner, U.: Software faults: spreading, detection
and costs. Softw. Eng. J. 5(1), 33–42 (1990)

47. Yourdon, E.: Structured Walkthroughs. Prentice-Hall (1989)
48. McBreen, P.: Use Case Inspection List. Last accessed May

2006. http://www.mcbreen.ab.ca/papers/QAUseCases.html
49. STEAM Laboratory website at the University of Al-

berta: Last updated May 2006. http://www.steam.ualber-
ta.ca/main/research_areas/SSUCD.htm

50. El-Attar, M., Miller, J.: AGADUC: towards a more pre-
cise presentation of functional requirement in use case
models. In: Proc. 4th ACIS International Conference on
Software Engineering, Research, Management & Applica-
tions (SERA 2006). Seattle (2006)

51. Paige, R.F., Ostroff, J.S., Brooke, P.J.: Principles for mod-
eling language design. Infor. Softw. Technol. 42(10), 665–
675 (2000)

Author’s biography

Mohamed El-Attar is Ph.D.
candidate (Software Engi-
neering) at the University
of Alberta and a member
of the STEAM laboratory.
His research interests include
Requirements Engineering, in
particular with UML and use
cases, object-oriented analysis
and design, model transfor-
mation and empirical studies.
Mohamed received a B.Eng. in
Computer Systems from Carl-
eton University. Contact him
melattar@ece.ualberta.ca

James Miller received the
B.Sc. and Ph.D. degrees in
Computer Science from the
University of Strathclyde,
Scotland. During this period,
he worked on the ESPRIT
project GENEDIS on the pro-
duction of a real-time stereovi-
sion system. Subsequently, he
worked at the United King-
dom’s National Electronic Re-
search Initiative on Pattern
Recognition as a Principal Sci-
entist, before returning to the
University of Strathclyde to
accept a lectureship, and sub-
sequently a senior lectureship

in Computer Science. Initially during this period his research inter-
ests were in Computer Vision, and he was a co-investigator on
the ESPRIT 2 project VIDIMUS. Since 1993, his research inter-
ests have been in Software and Systems Engineering. In 2000, he
joined the Department of Electronic and Computer Engineering
at the University of Alberta as a full professor and in 2003 be-
came an adjunct professor at the Department of Electrical and
Computer Engineering at the University of Calgary. He is the
principal investigator in a number of research projects that inves-
tigate verification and validation issues of software, embedded and
ubiquitous computer systems. He has published over one hundred
refereed journal and conference papers on Software and Systems
Engineering (see http://www.steam.ualberta.ca for details for re-
cent directions); and currently serves on the program committee
for the IEEE International Symposium on Empirical Software
Engineering and Measurement; and sits on the editorial board
of the Journal of Empirical Software Engineering. Contact him
jm@ece.ualberta.ca

www.manaraa.com

www.manaraa.com

